手机版365bet网址-365bet安卓手机客户端-365bet软件下载

手机版365bet网址

Gram 矩阵及其主要性质

2025-08-21 14:25:25 作者 admin 阅读 2296
Gram 矩阵及其主要性质

文章目录

Gram 矩阵6 大性质

Gram 矩阵

假设

A

A

A 是一个

m

×

n

m\times n

m×n 阶矩阵,

列向量 Gram 矩阵

A

A

A 由列向量

α

i

\mathbf{\alpha}_i

αi​ 表示, 即

A

=

[

α

1

α

2

α

n

]

A=\begin{bmatrix}\mathbf{\alpha}_1 & \mathbf{\alpha}_2 &\cdots & \mathbf{\alpha}_n \end{bmatrix}

A=[α1​​α2​​⋯​αn​​] 则

G

=

A

T

A

=

[

α

1

T

α

2

T

α

n

T

]

[

α

1

α

2

α

n

]

=

[

α

1

T

α

1

α

1

T

α

2

α

1

T

α

n

α

2

T

α

1

α

2

T

α

2

α

2

T

α

n

α

n

T

α

1

α

n

T

α

2

α

n

T

α

n

]

\begin{aligned} G &= \, A^{\mathsf T}A \\[3pt] &= \begin{bmatrix} \mathbf{\alpha}_1^{\mathsf T} \\ \mathbf{\alpha}_2^{\mathsf T} \\ \vdots \\ \mathbf{\alpha}_n^{\mathsf T} \end{bmatrix} \begin{bmatrix} \mathbf{\alpha}_1 & \mathbf{\alpha}_2 & \cdots & \mathbf{\alpha}_n \end{bmatrix} \\[3pt] & = \begin{bmatrix} \mathbf{\alpha}_1^{\mathsf T}\mathbf{\alpha}_1 & \mathbf{\alpha}_1^{\mathsf T}\mathbf{\alpha}_2 & \cdots & \mathbf{\alpha}_1^{\mathsf T}\mathbf{\alpha}_n \\ \mathbf{\alpha}_2^{\mathsf T}\mathbf{\alpha}_1 & \mathbf{\alpha}_2^{\mathsf T}\mathbf{\alpha}_2 & \cdots &\mathbf{\alpha}_2^{\mathsf T}\mathbf{\alpha}_n \\ \vdots & \vdots & & \vdots \\ \mathbf{\alpha}_n^{\mathsf T}\mathbf{\alpha}_1 & \mathbf{\alpha}_n^{\mathsf T}\mathbf{\alpha}_2 & \cdots & \mathbf{\alpha}_n^{\mathsf T}\mathbf{\alpha}_n \end{bmatrix} \end{aligned}

G​=ATA=⎣⎢⎢⎢⎡​α1T​α2T​⋮αnT​​⎦⎥⎥⎥⎤​[α1​​α2​​⋯​αn​​]=⎣⎢⎢⎢⎡​α1T​α1​α2T​α1​⋮αnT​α1​​α1T​α2​α2T​α2​⋮αnT​α2​​⋯⋯⋯​α1T​αn​α2T​αn​⋮αnT​αn​​⎦⎥⎥⎥⎤​​

行向量 Gram 矩阵

A

A

A 由行向量

β

i

T

\mathbf{\beta}_i^{\mathsf T}

βiT​ 表示, 即

A

=

[

β

1

T

β

2

T

β

m

T

]

A=\begin{bmatrix}\mathbf{\beta}_1^{\mathsf T} \\ \mathbf{\beta}_2^{\mathsf T} \\ \vdots \\ \mathbf{\beta}_m^{\mathsf T} \end{bmatrix}

A=⎣⎢⎢⎢⎡​β1T​β2T​⋮βmT​​⎦⎥⎥⎥⎤​ 则

G

=

A

A

T

=

[

β

1

T

β

2

T

β

m

T

]

[

β

1

β

2

β

m

]

=

[

β

1

T

β

1

β

1

T

β

2

β

1

T

β

m

β

2

T

β

1

β

2

T

β

2

β

2

T

β

m

β

m

T

β

1

β

m

T

β

2

β

m

T

β

m

]

\begin{aligned} G &= \, AA^{\mathsf T} \\[3pt] &= \begin{bmatrix}\mathbf{\beta}_1^{\mathsf T} \\ \mathbf{\beta}_2^{\mathsf T} \\ \vdots \\ \mathbf{\beta}_m^{\mathsf T} \end{bmatrix} \begin{bmatrix} \mathbf{\beta}_1 & \mathbf{\beta}_2 & \cdots & \mathbf{\beta}_m \end{bmatrix} \\[3pt] & = \begin{bmatrix} \mathbf{\beta}_1^{\mathsf T}\mathbf{\beta}_1 & \mathbf{\beta}_1^{\mathsf T}\mathbf{\beta}_2 & \cdots & \mathbf{\beta}_1^{\mathsf T}\mathbf{\beta}_m \\ \mathbf{\beta}_2^{\mathsf T}\mathbf{\beta}_1 & \mathbf{\beta}_2^{\mathsf T}\mathbf{\beta}_2 & \cdots &\mathbf{\beta}_2^{\mathsf T}\mathbf{\beta}_m \\ \vdots & \vdots & & \vdots \\ \mathbf{\beta}_m^{\mathsf T}\mathbf{\beta}_1 & \mathbf{\beta}_m^{\mathsf T}\mathbf{\beta}_2 & \cdots & \mathbf{\beta}_m^{\mathsf T}\mathbf{\beta}_m \end{bmatrix} \end{aligned}

G​=AAT=⎣⎢⎢⎢⎡​β1T​β2T​⋮βmT​​⎦⎥⎥⎥⎤​[β1​​β2​​⋯​βm​​]=⎣⎢⎢⎢⎡​β1T​β1​β2T​β1​⋮βmT​β1​​β1T​β2​β2T​β2​⋮βmT​β2​​⋯⋯⋯​β1T​βm​β2T​βm​⋮βmT​βm​​⎦⎥⎥⎥⎤​​

6 大性质

下面只考虑列向量 Gram 矩阵

(1)

G

=

A

T

A

G = \, A^{\mathsf T}A

G=ATA 是对称矩阵

G

T

=

(

A

T

A

)

T

=

A

T

A

=

G

G^{\mathsf T } = \, (A^{\mathsf T}A)^{\mathsf T} = \, A^{\mathsf T}A = G

GT=(ATA)T=ATA=G

(2) 对于实矩阵

A

A

A

r

a

n

k

(

A

T

A

)

=

r

a

n

k

(

A

)

\mathrm{rank} (A^{\mathsf T}A) = \mathrm{rank} (A)

rank(ATA)=rank(A)

证明

{

A

x

=

0

A

T

A

x

=

0

\begin{cases} A\mathsf{x} = 0 \\ A^{\mathsf T}A\mathbf{x} = 0 \end{cases}

{Ax=0ATAx=0​ 同解即可.

证明过程详见经典例题(第3小问)

(3) 若

A

T

A

=

0

A^{\mathsf T}A=0

ATA=0, 则

A

=

0

A = 0

A=0

由上面性质

r

a

n

k

(

A

T

A

)

=

r

a

n

k

(

A

)

=

r

a

n

k

(

0

)

=

0

\begin{aligned} \mathrm{rank} (A^{\mathsf T}A) &= \mathrm{rank} (A) \\ &= \mathrm{rank} \ (0) = 0 \end{aligned}

rank(ATA)​=rank(A)=rank (0)=0​

(4) 对于实矩阵

A

A

A, 则

A

T

A

A^{\mathsf T}A

ATA 是半正定矩阵

x

T

A

T

A

x

=

(

A

x

)

T

A

x

0

\mathbf{x}^{\mathsf T}A^{\mathsf T}A\mathbf{x} = (A\mathbf{x})^{\mathsf T}A\mathbf{x} \geq 0

xTATAx=(Ax)TAx≥0

(5) 对于任意

n

n

n 阶实对称半正定矩阵

M

M

M, 存在矩阵

A

A

A 使得

M

=

A

T

A

M=A^{\mathsf T}A

M=ATA 成立.

因为矩阵

M

M

M 实对称, 所以

M

M

M 可以正交对角化, 即

M

=

Q

Λ

Q

T

M = Q\Lambda Q^{\mathsf T}

M=QΛQT 又因为矩阵

M

M

M 半正定, 所以其特征值 $\lambda_i \geq 0 $, 所以可记

Λ

1

/

2

=

d

i

a

g

(

λ

1

,

,

λ

n

)

\Lambda^{1/2} = \mathrm{diag} ( \sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})

Λ1/2=diag(λ1​

​,…,λn​

​) 且 KaTeX parse error: Expected 'EOF', got '}' at position 29: …2}Q^\{\mathsf T}̲ 则可得

M

=

Q

Λ

Q

T

=

(

Λ

1

/

2

Q

T

)

T

Λ

1

/

2

Q

T

=

A

T

A

\begin{aligned} M &= Q\Lambda Q^{\mathsf T} \\ &= (\Lambda^{1/2}Q^{\mathsf T})^{\mathsf T}\Lambda^{1/2}Q^{\mathsf T} \\ &= A^{\mathsf T}A \end{aligned}

M​=QΛQT=(Λ1/2QT)TΛ1/2QT=ATA​

(6) 若

A

=

[

α

1

α

2

α

n

]

A=\begin{bmatrix}\mathbf{\alpha}_1 & \mathbf{\alpha}_2 &\cdots & \mathbf{\alpha}_n \end{bmatrix}

A=[α1​​α2​​⋯​αn​​] 列满秩, 则

A

T

A

A^{\mathsf T}A

ATA 正定

由性质 (2), 知

r

a

n

k

(

A

T

A

)

=

r

a

n

k

(

A

)

=

n

\mathrm{rank} (A^{\mathsf T}A) = \mathrm{rank} (A) = n

rank(ATA)=rank(A)=n因为

A

x

=

0

A\mathbf{x}=0

Ax=0 只有零解, 结合性质 (4), 对于非零

x

R

n

\mathbf{x}\in \mathbb{R}^n

x∈Rn

x

T

A

T

A

x

=

(

A

x

)

T

A

x

>

0

\mathbf{x}^{\mathsf T}A^{\mathsf T}A\mathbf{x} = (A\mathbf{x})^{\mathsf T}A\mathbf{x} > 0

xTATAx=(Ax)TAx>0

原文链接 [1] matnoble.me/posts/gram [2] 关注我吧

相关文章